## Triangulation of a commutative set

Problem. Let $X$ be a set of pairwise commuting operators on a finite dimensional vector space $V$ over an algebraically closed field. Prove that there exists a basis of $V$ such that all elements of $X$ has upper triangular matrices in this basis.

## Gidelines.

Lemma 1. Let $A$ and $B$ be matrices such that $A B=B A$. An eigenspace of $A$ is invariant under $B$.

Corollary 2. Let $A$ and $B$ be matrices such that $A B=B A$. Then they have a common eigenvector.

Using induction prove that that a finite commutative set of operators has a common eigenvector $u$. Extend this fact to an infinite set using that the set of all operators on $V$ is a finite dimensional vector space.

Pass to the quotient space $V /\langle u\rangle$ and apply the previous proposition to operators on this space. Prove the desired result by induction on $\operatorname{dim} V$.

