Var. 1 (131106)

Adeel

1. Find all possible Jordan forms of a matrix A, satisfying the equation $A^{2}=A^{3}$.
2. Given square matrices A and B over a field of characteristic 0 , satisfying the equation $A B-B A=B$ prove that 0 is the only eigenvalue of B.
Hint: To begin with, consider the case where B is a Jordan block.
Give a counterexample to the above statement in a prime characteristic.

Var. 2 (131106)
Ali Ovais

1. Given a matrix A with the entries $a_{i, n+1-i}=\alpha_{i} \in \mathbb{C}$ and all other zeroes find a condition on α_{i} 's which is equivalent to diagonalizability of A over \mathbb{C} ?
2. Let F be an algebraically closed field. Let M be a subset in $M_{n}(F)$ consisting of pairwise commuting matrices. Prove that there exists a common eigenvector of all matrices from M.

Var. 4 (131106)
Kamran

1. Let V be a vector space over a field K and let f be a basis of V. Given a linear operator $L: V \rightarrow V$ such that

$$
L_{f}=\left(\begin{array}{cccccc}
\alpha_{1} & 1 & 0 & 0 & \ldots & 0 \\
\alpha_{2} & 0 & 1 & 0 & \ldots & 0 \\
\alpha_{3} & 0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\alpha_{n-1} & 0 & 0 & 0 & \ldots & 1 \\
\alpha_{n} & 0 & 0 & 0 & \ldots & 0
\end{array}\right)
$$

prove that it has a nontrivial invariant subspace iff the polynomial

$$
x^{n}-a_{1} x^{n-1}-\cdots-a_{n-1} x-a_{n}
$$

is reducible over K.
2. Let $A \in \mathrm{M}_{m \times n}(\mathbb{R})$ and $B \in \mathrm{M}_{n \times m}(\mathbb{R})$ where $m \leqslant n$. Given a characteristic polynomial of $A B$ determine the characteristic polynomial of $B A$.
Hint. First, consider the case where $n=m$ and A is invertible. Then, using topological arguments show that the same holds for arbitrary square matrices. Finaly, deduce the general case from the above.

Var. 5 (131106)
Ahsan Khan

1. Suppose that a matrix $A \in \mathrm{M}_{n}(\mathbb{C})$ has a single eigenvalue and its geometric multiplicity equals 1. Describe the set of all matrices commuting with A (prove that this set is a subspace of $\mathrm{M}_{n}(\mathbb{C})$). In particular, find the dimension of this subspace.
2. Prove that for any square matrix A over an algebraically closed field there exists a matrix C such that $A^{T}=C^{-1} A C$.

Var. 6 (131106)
Yameen

1. Prove that a matrix $A \in \mathrm{M}_{n}(\mathbb{C})$ is nilpotent (i.e. $A^{k}=0$ for some positive integer k) iff 0 is the only eigenvalue of A. Determine the nilponency degree of A in terms of its Jordan form (the nilpotency degree is the smallest k such that $A^{k}=0$).
2. Let V be a complex vector space over a field K and let e be a basis of V. Given a linear operator $L: V \rightarrow V$ such that $A\left(e_{k}\right)=e_{k+1}$ for $k<n$ and $A\left(e_{n}\right)=e_{1}$ find the Jordan form and a Jordan basis of A.
Hint. Guess the minimal polynomial of A.

Var. 7 (131106)
Nehad

1. Suppose that an operator A in a n-dimensional complex vector space has only one 1-dimensional invariant subspace. Determine the Jordan form of the operator A^{k}, (where k is a positive integer).
2. Let $A \in \mathrm{M}(2, \mathbb{C})$. Complete the statement "The matrix equation $X^{2}=A$ has no solutions iff the matrix $A \ldots "$ and prove it.

Var. 9 (131106)
Umar

1. Determine the Jordan form of a matrix with a on the main diagonal and b elsewhere.
2. A n-dimensional complex vector space $V \underset{\tilde{V}}{ }$ can be regarded as a $2 n$-dimensional real vector space \tilde{V} (as a set $\tilde{V}=V)$. Suppose that the characteristic polynomial of an operator $A: V \rightarrow V$ is equal to $\prod_{i=1}^{n}\left(t-\lambda_{i}\right)$ (the numbers λ_{i} are not assumed to be distinct). Let $\tilde{A}: \tilde{V} \rightarrow \tilde{V}$ coincides with A as a map. Determine eigenvalues of \tilde{A}.

Var. 8 (131106)

1. Let $A \in \mathrm{M}(n, \mathbb{C})$ has n distinct eigenvalues. Determine the number of A-invriant subspaces.
2. Let

$$
\begin{gathered}
M=\left\{\left.\left(\begin{array}{ll}
a & b \\
b & 0
\end{array}\right) \right\rvert\, a, b \in \mathbb{C}, 0 \leqslant \arg b<\pi \text { or } b=0\right\} \cup \\
\{c I \mid c \in \mathbb{C} \backslash\{0\}\} \cup\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right\}
\end{gathered}
$$

Prove that any matrix from $\mathrm{M}_{2}(\mathbb{C})$ is conjugate to exactly one matrix from M.

Var. 10 (131106)
Yasir

1. Let V be a n-dimenisonal vector space. A linear operator P on V is called a projector if $P^{2}=P$. Prove that any projector splits into a sum of projectors of rank 1 such that all pairwise products are equal to 0 .
2. Suppose that an operator $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ has a single eigenvalue and its geometric multiplicity equals 1. Find all A-invariant subspaces of \mathbb{C}^{n}.

Var. 11 (131106)
Zunaira

1. Prove that for any operator L in a finite dimensional complex vector space V there exists a basis f of V such that $L_{f}=L_{f}^{T}$.
Hint. Show that a Jordan block is conjugate to a symmetric matrix by the matrix $\frac{1}{\sqrt{2}}(I+i B)$, where B is the matrix with 1 in the right-hand side diagonal and 0 elsewhere.
2. Let F be an algebraically closed field and $A \in \mathrm{M}_{n}(F)$. Find a condition on A equivalent to the following statement: Given a polynomial $p \in F[t]$ there exists a common Jordan basis for A and $p(A)$.
