Var. 1 (1)

1. Write the matrix of a linear operator L in a basis u, if L acts on the basic vectors in the following way: $L\left(u_{1}\right)=2 u_{1}-u_{3} ; L\left(u_{2}\right)=u_{1}+u_{2}+u_{3} ; L\left(u_{3}\right)=2 u_{3}$.
2. Find the matrix of the operator L in the standard basis of \mathbb{R}^{3}, where $L(v)=v \times(10,-5,7)^{T}$ (here \times denotes the vector product).
3. Let V be the vector space of all symmetric polynomials of degree at most 2 over \mathbb{R} in two variables x and y. Choose a basis in V and find the matrix of the operator $L: V \rightarrow V$ in this basis, where L is given by $L(f)(x, y)=(-2 x-y) \frac{\partial f}{\partial x}+(-x-2 y) \frac{\partial f}{\partial y}$.

Var. 2 (1)

1. Write the matrix of a linear operator L in a basis u, if L acts on the basic vectors in the following way: $\quad L\left(u_{1}\right)=u_{1}+u_{2}+u_{3} ; \quad L\left(u_{2}\right)=-u_{1}+2 u_{2}$; $L\left(u_{3}\right)=u_{2}+u_{3}$.
2. Find the matrix of the operator L in the standard basis of \mathbb{R}^{3}, where $L(v)=v-2 \frac{(a, v)}{(a, a)} a$ and $a=(3,-2,-5)^{T}$ (here (,) denotes the standard scalar product).
3. Let V be the vector space of real 2×2 matrices with zero trace. Choose a basis in V and find the matrix of the operator $L: V \rightarrow V$ in this basis, where L is given by $L(A)=\left(\begin{array}{cc}0 & -2 \\ -3 & 3\end{array}\right) \cdot A-A \cdot\left(\begin{array}{cc}0 & -2 \\ -3 & 3\end{array}\right)$.

Var. 4 (1)

1. Write the matrix of a linear operator L in a basis u, if L acts on the basic vectors in the following way: $L\left(u_{1}\right)=2 u_{1}-2 u_{2}+u_{3} ; L\left(u_{2}\right)=-u_{1}+u_{2}+u_{3}$; $L\left(u_{3}\right)=u_{1}+u_{2}+u_{3}$.
2. Find the matrix of the operator L in the standard basis of \mathbb{R}^{3}, where $L(v)=(a, v) b-(b, v) a, \quad a=(2,1,-3)^{T}$, and $b=(-1,-5,3)^{T}$.
3. Let V be the vector space of all real symmetric 2×2 matrices. Choose a basis in V and find the matrix of the operator $L: V \rightarrow V$ in this basis, where L is given by $L(A)=\left(\begin{array}{cc}-1 & 1 \\ -3 & -1\end{array}\right) \cdot A \cdot\left(\begin{array}{cc}-1 & -3 \\ 1 & -1\end{array}\right)$.
