Problem. Let A and B be n by n complex matrices. Assume that their ring-theoretical commutator AB - BA has rank 1. Prove that they have a common eigenvector.

Gidelines.

Lemma 1. A matrix of rank 1 can be represented as a product of a column and a row.

By terminological reasons we shall identify operators on Hermitian space \mathbb{C}^n with their matrices in the standard basis.

Lemma 2. Without loss of generality we may replace A by $A - \lambda I$ and, thus, we may assume that the operator A has a nonzero kernel.

Lemma 3. $(AB)^* = B^*A^*$ (where star denotes the dual operator).

The next lemma is a key step in the proof.

Lemma 4. If rank(AB - BA) = 1 then either Ker A is invariant under B or Ker A^* is invariant under B^* .

Hint. Write AB - BA = uv for a suitable column u and row v and multiply this equation by a column $x \in \text{Ker } A$ from the right and by a row y, where $y^* \in \text{Ker } A^*$, from the left (here y^* denotes transpose conjugated to y).

Lemma 5. If x is an eigenvector of A^* , then $\langle x \rangle^{\perp}$ is invariant under A.

The last lemma shows that if A^* and B^* have a common eigenvector, then A and B have common invariant subspace of dimension less that n. Thus, the proof can be competed by induction on n.